
Tutorial 1 – A complete pipeline to process chromatogram files in a cDNA
sequencing project

Introduction

 In this tutorial, we describe the specification of a pipeline that processes raw
chromatogram files from a cDNA sequencing project. This pipeline is similar to the
one that our group uses for ORESTES reads. ORESTES (ORF ESTs) are cDNA
fragments synthesized by RT-PCR using 18 to 25-mer arbitrary primers under a low
stringency (Dias-Neto et al. - Shotgun sequencing of the human transcriptome with
ORF expressed sequence tags. Proc. Natl. Acad. Sci. USA 97(7): 3491-3496, 2000).
In this kind of ESTs, there is no need to mask and trim the polyA tails, since most of
the reads span the central part of the transcripts. PolyA trimming will be covered and
discussed in Tutorial 4. On the other hand, because ORESTES technique is based on
the use of arbitrary primers to generate the cDNAs, the corresponding primer
sequences should be masked.

The following steps constitute this pipe:

1. Uploading trace files and performing base calling and quality evaluation;
2. Masking primer sequences;
3. Masking vector sequences;
4. Filtering low quality sequences;
5. Saving sequences invalidated by the quality filter;
6. Trimming the bases that present a low Phred quality value and those that are

masked;
7. Filtering sequences considered too small;
8. Saving sequences invalidated by the size filter;
9. Filtering mitochondrial sequences;
10. Saving sequences invalidated by the contaminant filter;
11. Filtering ribosomal sequences;
12. Saving sequences invalidated by the contaminant filter;
13. Saving sequences not previously invalidated by any filter;
14. Generating a report of all filtering steps;
15. Creating an XML snapshot recording all the processing steps that were

performed;
16. Assembling the valid sequences using CAP3;
17. Generating an HTML page with graphical reports;
18. Generating a complete graphical report.

We have previously constructed a pipeline for this tutorial using CoEd, EGene’s
graphical configuration editor. The EGene’s configuration file
(trace_file_complete.gen) and its counterpart text file
(trace_file_complete.cnf) can be found at the config_files directory. In
order to run the pipeline, go to the /examples/traces_complete_pipe
directory. This directory contains the subdirectory chromat_dir, which presents a
set of trace files, and the file primer_table.txt, composed by a list of the
primers used in the sequencing.

To run the pipe, you should type the following command:

bigou.pl –c ../config_files/trace_file_complete.cnf

If everything goes well, you should now find the following additional files in this

directory:

filtered_by_quality.fasta
filtered_by_size.fasta
filtered_by_mitochondria.fasta
filtered_by_ribosome.fasta
filtering_report.html
redundancy_report.html
report_graphic_simple.html
final_snapshot.xml
good_sequences.fasta

and the following additional directories:

assembly_dir/
complete_report/
images_dir/

Understanding the pipeline and the component parameters:

The configuration file is actually a concatenation of the specification for all steps
of the pipeline. A text section that starts with two parameters describes every step:

• PHASE: specifies a name for the pipeline step. Used by CoEd to label the icon

representing the step.
• program: specifying the name of the component to be run at the step.

After this preamble, the parameters for the component are specified. Below we
describe the parameters for each step of this pipeline. In this tutorial we will show, for
each step of the pipeline, the text section of the configuration file corresponding to the
step.

1. Uploading sequences in trace file format

Configuration parameters in the .cnf file:

#===
PHASE=Upload traces
program = upload_traces_phred.pl
#---
directory = chromat_dir
#===

This step uses the software Phred to perform base calling in a set of trace files. The

only argument to this component is the directory that contains the trace files (in our
case chromat_dir). It is assumed that bigou.pl is run while the shell is in the
directory that contains chromat_dir. Alternatively, the user can specify a complete
path for the directory (e.g. /home/test/chromat_dir).

2. Masking primer sequences

Configuration parameters in the .cnf file:

#===
PHASE=Primers
program = mask_cross_match.pl
#---
maskLibrary = ../../databases/primers.fasta
matchArgumentList = -minmatch 7 -minscore 12 -penalty -1 -
gap_init -2
sequence_primer_table = primer_table.txt
minimum_alignment_size = 15
matchOut = /dev/null
#===

There are 5 parameters for this component:
• mask_Library: relative or complete path to the multiFASTA file that contains

the primer sequences.
• MatchArgumentList: command line arguments for Cross_match program.
• sequence_primer_table: when the database of primer sequences contains

more than the primers specifically used for the particular set of sequences being
processed, the user can create a small file presenting a list of the names of the
primers that should be looked for in the particular run of the pipeline. This
argument describes where to find this file.

• minimum_alignment_size: setting appropriate arguments for Cross_match can
be very problematic for small sequences, as stringent parameters would not
identify the primer sequence, while loose parameters would lead to a unacceptable
rate of false positive matches. This parameter specifies the minimum size of the
alignment block for a primer sequence to be considered, allowing for less stringent
command line arguments for Cross_match.

• match_Out: it is possible to save Cross_match’s output in a specified file. This
argument describes the name of the file and the path. Saving similarity search
results from Cross_match can be particularly useful for monitoring purposes,
especially when standardizing the parameters of the filtering stringency of a
pipeline.

3. Masking vector sequences

Configuration parameters in the .cnf file:

#===
PHASE=Vectors
program = mask_cross_match.pl
#---
maskLibrary = ../../databases/vectors.fasta
matchArgumentList = -minmatch 12 -penalty -2 -minscore 20
minimum_alignment_size = 0
matchOut = /dev/null
#===

Here we run the same component as in the previous step, but with different
parameters. Since vector sequences are long, there is no need limit a minimum size
for the alignment block. Thus, the minimum_alignment_size parameter can be set
to zero.

4. Filtering low quality sequences

Configuration parameters in the .cnf file:

#===
PHASE=Quality 10/15
program = filter_quality.pl
#---
minimum_quality_other_bases = 10
percentage_readings_in_sequence = 0
percentage_good_bases_in_window = 85
minimum_quality_in_window = 15
invalid_letters = XxNn
window_size = 100
#===

This step filters out low quality sequences. The filter_quality.pl program
uses a two-step approach. First, it checks the overall quality rate. For this purpose, the
Phred quality values are computed for all bases and compared to the quality threshold
(minimum_quality_other_bases). Those bases that present quality values above
the threshold are classified as valid. The read itself is considered valid if the
percentage of valid bases is higher than the value previously established by the
parameter percentage_readings_in_sequence. As a second step, the program
uses a sliding window and looks for a stretch of bases presenting a minimum
percentage of valid bases, where valid bases are those presenting Phred quality above
the number defined by the parameter minimum_quality_in_window. The second
step is used to guarantee that the read includes a continuous region of high quality
bases.

The parameters are:

• minimum_quality_other_bases: indicates what is the quality threshold for the
overall evaluation of the sequence.

• percentage_readings_in_sequence: indicates what percentage of the bases
need to have a quality value above the threshold in an overall evaluation. In this
example, we have set the value to zero, indicating no restriction on the overall
quality evaluation.

• minimum_quality_in_window: indicates the quality value threshold for the
second step of the evaluation. This number is generally larger than that used for
minimum_quality_other_bases.

• percentage_good_bases_in_window: minimum percentage of valid bases for
the second step of the evaluation.

• window_size: indicates the window size to be used at the second step of the
program. Summarizing, in this particular example, valid sequences will be those
that present a continuous stretch of at least 100 bp, where at least 85% of the bases
are not masked and present a Phred quality value above 15.

• invalid_letters: filter_quality.pl considers as “bad” those bases that
present a Phred quality value below the appropriate threshold, as well as those that
are explicitly indicated as invalid. In this example, we consider invalid bases those
that are represented by the characters “x” (masked) or “n” (ambiguities). The
“xXnN” characters indicate that either lower or upper case letters are considered.

5. Saving sequences invalidated by the quality filter

Configuration parameters in the .cnf file:

#===
PHASE=Quality
program = snoop_filtered.pl
#---
program = filter_quality.pl
output_file = filtered_by_quality.fasta
format_file = fasta
valid = false
library = .*
#===

This step generates a FASTA file with the sequences of all reads invalidated in step
four (quality filter). To do this, the parameters of the snoop_filtered.pl program
are:

• program: snoop_filtered.pl can check for sequences invalidated by any

filtering component. This argument specifies if we are interested on sequences that
have been processed by some specific filtering program. In this case, we want to
look at the sequences examined by filter_quality.pl.

• output_file: name of the output file.
• format_file: format of the output file. In this case the chosen format is fasta,

but xml (XML) and phd (Phred PHD file) are also available options.
• valid: this argument specifies the output file should contain the sequences that

were invalidated by the filtering program (value = false) or those that were
considered valid (value = true).

• library: this argument is used when the filtering program uses some database
(e.g. filter_blast.pl). This argument specifies the name of the database that
originated the filtering. The default value is “.*”, which indicates any database (the
value is a Perl regular expression).

6. Trimming sequences

Configuration parameters in the .cnf file:

#===
PHASE=End/middle
program = trimming.pl
#---
minimum_quality = 10
quality_threshold = 80
invalid_letters = XxNn
window_size = 30
verification_window_quality = 20
verification_window_size = 15
#===

After masking, we can now trim the bases that present either low quality, or
masked, or have not ambiguity (n”) known value. Trimming.pl also works in two
steps. The first step is end-trimming, where the goal is to trim low quality and invalid
bases on the 5' and 3' ends of the sequence. The second step is a search for a region
with no significant stretches of low quality bases in the middle. Both phases use
sliding windows and are optional. The parameters are:

• minimum_quality: minimum Phred quality value for a base to be considered

acceptable.
• quality_threshold: indicates the minimum percentage of good bases in a

window for it to be considered acceptable.
• window size: this is the size of the sliding window at the first step. The program

scans the sequence starting, respectively, at the 5' and 3' ends with a window of 30
bp. In either case the window is moved towards the center while the number of
good bases is below the threshold. The program trims all bases between the
window and the 5' (or 3') end of the sequence.

• verification_window_quality: this is the minimum quality value for the
second step.

• verification_window_size: size of the window used in the second step.
• verification_window_quality: quality threshold for the second step. Here

the sequence remaining after the first step is investigated with the second window.
In this second step the regions where the sliding window finds the number of good
bases below the threshold are marked. One of the remaining “good” parts is
chosen, and the rest of the sequence is trimmed. The algorithm adds up the quality
of all bases for each “good” part. The part with the highest sum is chosen.

You should consider the parameters used here only as a guideline. In our
experience, each project needs a different setting due to different notions of what part
of the sequence needs to be kept.

7. Filtering sequences by size

Configuration parameters in the .cnf file:

#===
PHASE=Size 70
program = filter_size.pl
#---
minimum_size = 70
#===

After trimming, some sequences may have too few bases left. This component

invalidates sequences that are too small to be useful. The only argument is
mininum_size, stating the minimum acceptable size for a sequence.

8. Saving the sequences filtered by size

Configuration parameters in the .cnf file:

#===
PHASE=Small size
program = snoop_filtered.pl
#---
program = filter_size.pl
output_file = filtered_by_size.fasta
format_file = fasta
valid = false
library = .*
#===

Here we use snoop_filtered.pl to save the sequences invalidated by the

program filter_size.pl into the file filtered_by_size.fasta. Thus, the
first two parameters are different than those used in the fifth step of the pipeline. All
the other parameters are the same.

9. Filtering contaminants: mitochondrial sequences

Configuration parameters in the .cnf file:

#===
PHASE=Mitochondria
program = filter_cross_match.pl
#---
maskLibrary = ../../databases/mitochondria.fasta
matchArgumentList = -minmatch 35 -penalty -1 -minscore 30
matchOut = /dev/null
#===

 This step invalidates reads originated from potential contaminant sources or
undesired sequences. In this particular example, a pipeline designed for an EST
sequencing project, we consider mitochondrial sequences as undesired. The program
filter_cross_match.pl runs Cross_match and performs a similarity search
against a database of undesired sequences. If a match is found, it invalidates the
corresponding sequences. In this particular case, we chose to use
filter_cross_match.pl because Cross_match is more sensitive than BLAST,
and also because our mitochondria database is small enough to be used by
Cross_match with an acceptable performance.

The parameters are:

• maskLibrary: name (relative or full path) of a multiFASTA file that contains the

mitochodrial sequences.
• matchArgumentList: command line argument for Cross_match. These

arguments were set using our previous experience, but can be modified by the user
according to the desired stringency.

• matchOut: this argument specifies a file to store the Cross_match output of each
search. In this case, we are discarding the results by redirecting them to
/dev/null.

10. Saving mitochondrial sequences

Configuration parameters in the .cnf file:

#===
PHASE=Save Mit
program = snoop_filtered.pl
#---
program = filter_cross_match.pl
output_file = filtered_by_mitochondria.fasta
format_file = fasta
valid = false
library = mitochondria.fasta
#==

Here we use snoop_filtered.pl to store the mitochondria-derived sequences,

invalidated in the previous step. Three parameters have settings different from those
used previously (steps 5 and 8):

• program: this argument specifies the program that was used in the previous step to

invalidate the sequences. In this example, we used filter_cross_match.pl.
• output_file: the invalidated sequences will be stored in the file named

filtered_by_mithocondria.fasta.
• library: this corresponds to the name of the file containing the database of

undesired sequences. In this case, we use mitochondria.fasta file as the
database of mitochondrial sequences.

11. Filtering contaminants: ribosomal sequences

Configuration parameters in the .cnf file:

#===
PHASE=Ribosome
program = filter_blast.pl
#---
database = ../../databases/ribosome.fasta
minimum_block_size = 90
matchArguments = -W 0
minimum_identity_percent = 0
maximum_Evalue = 1e-20
minimum_similarity_percent = 88
blast_output = /dev/null
program = blastn
#===

Again, we will perform a similarity-based filtering. However, this time the

database is quite large, and Cross_match would present a poor performance compared
to BLAST. Therefore, we employ filter_blast.pl, a component that uses
BLAST as the third-party similarity search tool. The parameters are:

• database: indicates the name of the database file containing the ribosomal

sequences. Notice that this file must be previously formatted by formatdb, a
companion tool of BLAST package. The index files, created by formatdb, must
be present at the same path as the database file, otherwise BLAST will abort
execution.

• minimum_block_size: minimum size of the alignment block for it to be
considered as a match by the filter.

• mininum_similarity_percent: minimum value for the similarity of the
alignment for it to be considered as a match by the filter. In case of filtering based
on protein alignments, one can also use the parameter
minimum_identity_percent.

• maximum_Evalue: maximum E-value of a match for it to be considered as a
match by the filter. In this case, any sequences presenting alignment with E-values
lower than 10-20 will be filtered out.

• Match_arguments: any additional BLAST command line arguments can be used
here.

• blast_output: this argument specifies a file to store the BLAST output of each
search. In this case, we are discarding the results by redirecting them to
/dev/null.

• program: program to be run by blastall (BLAST command line program). In
this case, we use blastn (query and subject correspond to nucleotide sequences).
Additional available options include blastp, blastx, tblastx and tblastn.

12. Saving ribosomal sequences

Configuration parameters in the .cnf file:

#===
PHASE=Save Rib.
program = snoop_filtered.pl
#---
program = filter_blast.pl
output_file = filtered_by_ribosome.fasta
format_file = fasta
valid = false
library = ribosome.fasta
#===

The parameters are:

• Here we use snoop_filtered.pl to store the ribosome-derived sequences,

invalidated in the previous step. The arguments are similar to the previous use of
this component, but the filtering program now is filter_blast.pl.

• library: the database file is ribosome.fasta.
• output_file: the invalidated sequences will be stored in the file named

filtered_by_ribosome.fasta.
• valid: we are interested again in sequences invalidated by filter_blast.pl,

so this parameter should be set to false.
• format: we want a multiFASTA file, so we choose fasta in this parameter.

13. Saving valid sequences

Configuration parameters in the .cnf file:

#===
PHASE=Save Good
program = snoop_filtered.pl
#---
program = .*
output_file = good_sequences.fasta
format_file = fasta
valid = true
library = .*
#===

• In this step, snoop_filtered.pl is used to save the valid sequences. In order to

save the valid sequences, we set the valid parameter to the value true. The valid
sequences will be stored in the file named good_sequences.fasta.

• Because there is no other program nor database associated with this step, the
program and library parameters should both be set to “.*”.

14. Producing a report of all filtering steps

Configuration parameters in the .cnf file:

#===
PHASE=Report Filt.
program = report_filtering.pl
#---
report_file = filtering_report.html
report_title = Good sequences
alias_database_file = ../../config_files/pipe.alias
#===

The component report_filtering.pl produces an HTML report indicating

how many sequences were filtered in each previous filtering steps of the pipeline. The
parameters are:

• report_file: name of the HTML file that will store the results.
• report_title: title of the last entry in the table, indicating the number of files

that have not been filtered.
• alias_database_file: name of the database alias file. Database files that are

used by the similarity filtering steps not always have nice names. The user can
create a file indicating how each database name should be printed in the filtering
report. An example of an alias file is pipe.alias, located in the
config_files directory. Like all parameters specifying file names, the names
can indicate the complete or relative path of the file. In this example, a relative
pathname has been specified.

15. Creating an XML snapshot recording all the processing steps that were
performed;

Configuration parameters in the .cnf file:

#===
PHASE=Snapshot
program = outsave.pl
#---
savefile = final_snapshot.xml
file_format = xml
#===

The component outsave.pl creates a snapshot of all the processing steps that
have been performed along the pipeline. This component can be used to generate a
flatfile database. The resulting file can be fed into a new pipeline using the
upload_xml.pl component (see Tutorial 3). The result is the same as continuing the
processing from the point where the snapshot has been generated. This component can
be used to implement forks in the pipeline. We create a snapshot just before the “fork”
of the workflow, generate a separate pipe specification for each of the “branches” of
the fork, and run each of these new pipelines using the snapshot produced. The
parameters are:

• savefile: name of the snapshot file.
• file_format: format of the output file. The default value, specified here, is

XML, but fasta and phd (Phred PHD file) are also available options. When we
use xml, in fact we are generating a flatfile database of all processing done before
this step.

16. Assembling the valid sequences

Configuration parameters in the .cnf file:

#===
PHASE=Assembly
program = assemble_cap3.pl
#---
assemble_base_dir = assembly_dir
prefixName = clean
chromatDirBase = chromat_dir
report_file = redundancy_report.html
#==

In this step, we will assemble the valid sequences using the program CAP3. The
component that performs this task is assemble_cap3.pl. Alternatively, the user can
choose Phrap as the assembler. For doing so, the component assemble_phrap.pl
should be used instead (see Tutorial 3). The component assemble_cap3.pl does

not alter any sequence, but rather generates new files. Thus, it can also be seen as a
report component. The parameters are:

• assemble_base_dir: the output of the assembly is stored in a directory

structure. The topmost directory is specified in this parameter. Therefore, in our
case, all the assembly output will be found in the assembly_dir directory. Three
sub-directories will be also generated: chromat_dir, edit_dir and phd_dir.
These directories follow the structure required by Consed, a viewer and editor for
assembled sequences.

• prefixName: during assembly, CAP3 generates various files containing assembly
data. All these files will present the name specified in this argument as a prefix
(e.g. clean in this example).

• chromatDirBase: if chromatogram files are available, they can be copied into
chromat_dir directory, so the traces can be displayed by Consed. In fact, in
order to save disk space, we use a UNIX command to create symbolic links.

• report_file: an HTML report file is generated after the assembly. This file
contains information on the number of contigs and singlets, total number of distinct
assembled events and the overall redundancy. The report_file parameter
specifies the name of that file, in this example redundancy_report.html.

17. Generating an HTML page with graphical reports

Configuration parameters in the .cnf file:

#===
PHASE=Simple report
program = report_graphic_simple.pl
#---
html_report_name = report_graphic_simple.html
dir_name = images_dir
sequence_valid = true
primer_database = primers.fasta
#===

This component generates an HTML file containing a graphical report of each
read. The report displays a base quality graph with horizontal bars that indicate the
masked and trimmed regions of sequence. The parameters are:

• html_report_name: name of the HTML output file.
• dir_name: this argument specifies the name of the directory that will store all the

graphic files (created in PNG format).
• sequence_valid: the report can be generated for both valid and invalid

sequences. In our example, we want the graphic files for the valid sequences, so
the paramater is set to true.

• primer_database: the graphical report indicates all the maskings with
horizontal bars. When masking primers, the orientation of the respective
oligonucleotide is displayed. This argument states the name of the primer database.
All masking performed due a match against this database will be displayed as a red
horizontal bar, with the arrowhead indicating the primer orientation. Notice that
this parameter refers solely to the name of the database specified in the masking
component. There is no need to declare the path.

18. Generating a complete graphical report

Configuration parameters in the .cnf file:

#===
PHASE=Complete
program = report_graphic_complete.pl
#---
report_dir = complete_report
report_file = complete_report.html
alias_database_file = /dev/null
primer_database = primers.fasta
#===

The complete graphical report is an HTML page containing, for each sequence

processed by the pipeline, a link to a page that contains all the information of the
simple report described above, with the addition of the following data:

• An indication if the sequence is valid or not.
• For invalid sequences, the program responsible for the invalidation and the

configuration parameters that were used.
• The names of the sequences that presented a match during the masking process and

the coordinates of the masked regions.
• A bases report presenting the following information: read size and number of

clean, masked and trimmed bases.

The parameters are:

• report_dir: directory that will contain all the files used in this report (including

the main report file).
• report_file: name of the HTML report file. This file contains a list of read

names, with an indication if the sequence is valid or not. Each read name is also a
link to a page displaying the corresponding graphical report.

• alias_database_file: name of the database alias file (see step 14).
• primer_database: similar to the previous step (17).

© Copyright 2004: Alan M. Durham and Arthur Gruber

