

Tutorial 4 – A pipeline to upload FASTA files from an EST sequencing and trim the
polyA tail

Introduction

 In this tutorial, we describe the specification of a pipeline that processes FASTA files from a
cDNA sequencing project and trims the polyA tails.

The following steps constitute this pipe:

1. Uploading FASTA files;
2. Trimming polyA sequences;
3. Trimming polyT sequences;
4. Saving the trimmed sequences;

We have previously constructed a pipeline for this tutorial using CoEd, EGene’s graphical
configuration editor. The EGene’s configuration file (polyA_trimming.gen) and its
counterpart text file (polyA_trimming.cnf) can be found at the config_files directory.
In order to run the pipeline, go to the /examples/fasta_polyA_trimming_pipe
directory. This directory contains a multiFASTA file called polyA.fasta, which contains a
set of sequences containing polyA sequences.

To run the pipe, you should type the following command:

bigou.pl –c ../config_files/polyA_trimming.cnf

If everything goes well, you should now find the following additional files in this directory:

trimmed_sequences.fasta

1. Uploading sequences in FASTA format

Configuration parameters in the .cnf file:

#===
PHASE=Input fasta
program = upload_fasta.pl
#---
multifastafile = polyA.fasta
#===

This step uses the component upload_fasta.pl to upload a multiFASTA file. This file
is composed by multiple concatenated sequences in FASTA format. The only argument to this
component is the name of this multiFASTA file (in our case polyA.fasta). It is assumed that
bigou.pl is run while the shell is in the directory that contains the file polyA.fasta.
Alternatively, the user can specify a complete path for the file (e.g. /home/test/
polyA.fasta). Note: FASTA files do not contain data about base quality. EGene assumes in
this case all bases have a Phred quality equal to 20.

2. Trimming polyA sequences

Configuration parameters in the .cnf file:

#===
PHASE=Trim polyA
program = trimming.pl
#---
minimum_quality = 0
quality_threshold = 10
invalid_letters = Aa
window_size = 15
verification_window_quality = 0
verification_window_size = 15
#===

We have not developed a specific component to trim polyA tails from cDNAs. Instead, we
use the trimming.pl component, already presented in Tutorial 1. This component can trim
sequence ends containing low quality bases (measured in terms of Phred evaluation), or when it
finds ambiguities (nN bases) and masked bases (xX). Because the characters to be considered as

invalid can be generically specified in the parameter invalid_letters, any base can be
classified as invalid. Using this feature, in order to trim polyA tails we have to specify the characters
“Aa” as invalid. The parameters are:

• minimum_quality: because quality is not taken into account for FASTA files, this
parameter is set to zero.

• quality_threshold: indicates the minimum percentage of good bases in a window for it
to be considered acceptable. In this case the value 10 (10%) indicates that we consider as
polyA a window where at least 90% of the bases are invalid (that is “a” or “A”).

• window size: this is the size of the sliding window at the first step. The program scans the
sequence starting, respectively, at the 5' and 3' ends with a window of 15 bp. In either case,
the window is moved towards the center while the number of good bases is below the
threshold. The program trims all bases between the window and the 5' (or 3') end of the
sequence.

• verification_window_quality: because quality is not taken into account for FASTA
files, this parameter is set to zero.

• verification_window_size: size of the sliding window used in the second step. Using
the second step enables the program to find polyA tails that are not immediately at the 5’ or
3’ends of the sequence. This is not an uncommon situation in sequencing projects, especially
when miscalled bases appear after polyA sequences. It is extremely important for this
parameter to be set correctly. The window size should be large enough to preclude trimming
when a small stretch of adenines is found in the middle of the sequence (here we consider 15
bases a sufficient size).

3. Trimming polyA sequences

Configuration parameters in the .cnf file:

==
PHASE=Trim polyT
program = trimming.pl
#---
minimum_quality = 0
quality_threshold = 10
invalid_letters = Tt
verification_window_size = 15
verification_window_quality = 0
window_size = 15
#===

 We have to specify the characters “Tt” in the invalid letters parameter in a second
trimming, just to assure that polyA tails present in reverse complementary sequences will be
also removed.

 Note: Steps 2 and 3 cannot be reduced to a single pass of trimming.pl using “AaTt” as
the invalid letters. This would result in a trimming of AT-rich sequences, not only
homopolymeric regions of A or T bases, clearly an undesired effect.

 The last two steps are performed by snoop_filtered.pl and outsave.pl components,
both of them already discussed in Tutorial 1.

© Copyright 2004: Alan M. Durham and Arthur Gruber

