

GenSeedGenSeedGenSeedGenSeed

Quick GuideQuick GuideQuick GuideQuick Guide

 1

GenSeed – Quick Guide

1. System requirements

GenSeed is a Perl script designed for Linux machines. The software requires PERL::GD library to

generate a graphical output. This library can be downloaded from http://www.cpan.org/.

GenSeed also requires the following software:

• BLAST package. BLAST can be downloaded from ftp://ftp.ncbi.nih.

gov/blast/executables/release/. GenSeed uses the following executables from the package:

formatdb, blastall, fastacmd and bl2seq.

• GenSeed uses Cross_match, only if vector masking is required. GenSeed generates *.ace

assembly files that can be easily inspected using Consed. Cross_match and Consed are

components of the Phred/Phrap/Consed package. Instructions for obtaining this package are

provided at http://www.phrap.org/phredphrapconsed.html.

• CAP3. CAP3 assembly program can be downloaded from http://seq.cs.iastate.edu/.

• HTML browser. GenSeed produces text and graphical output files in HTML format. These

files can be inspected in any HTML browser such as Mozilla Firefox or Internet Explorer.

2. Algorithm and implementation

GenSeed is a program for the recursive reconstruction of sequences flanking the ends of a starting

sequence, referred from now on as the seed sequence. The principle of the program is based on the

use of a seed sequence in a similarity search to select reads from a database that presents overlaps to

the ends. These reads are then assembled together with the seed itself, resulting in a longer

consensus sequence. The ends of this longer sequence are in turn used in a subsequent walking

round, and the process is iterated a number of times, resulting in a progressive extension of the

original seed sequence. GenSeed accepts either nucleic acid or protein sequences in FASTA format

as seeds (Figure 1A). In principle, there is no restriction to the seed length, and we have succeeded

to reconstruct sequences starting from 17-base SAGE tags and from 8-residue proteomic data.

However, whenever possible, we suggest using a minimum of 50 bp and 15 amino acid residues for

nucleic acid and protein sequences, respectively. The seed sequences must not contain low-

 2

complexity regions, as they could recruit physically unrelated sequences. Any set of multiple

nucleotide sequences in FASTA format can be used to compose a database, with no trace files or

quality values being required or used (Figure 1B). GenSeed invokes formatdb, a program from

BLAST package that generates index files from the database. A nucleotide sequence seed is then

submitted to a BLASTN similarity search against the database (Figure 1C). In case of a protein

seed, GenSeed automatically recognizes its character and runs a TBLASTN search against the

database. The positive reads are then retrieved using fastacmd, another BLAST package program

that fetches sequences in a very rapid way using the database index files. The sequences can then be

masked against a database of vectors using Cross_match (Phil Green, unpublished) and finally be

assembled with CAP3. The assembly output files are checked to identify which contig contains the

original seed sequence, and the consensus is stored. In order to save computational resources,

GenSeed does not use the whole consensus sequence as a seed for the next round. Instead, the user

can define the size of the sequence ends that will be used as seeds for the subsequent round. From

the second round on, the assemblies are carried out using all positive hits of that round, plus the

whole consensus sequence generated in the previous one.

An additional procedure is executed to avoid the incorporation of potential chimeric sequences in

each round. All positive reads selected to extend a sequence end are submitted to a similarity search

against the whole consensus sequence of the previous round. A read is considered a potential

chimera if the alignment does not extend either to the end of the consensus sequence or to the end

of the read itself. The assembly then proceeds with the reads that fulfilled the criteria depicted

above. All positive reads are fetched and assembled, and the resulting consensus is then used in the

further cycles, as described for nucleotide sequences. The iterative process (Figure 1C) is concluded

when a user-defined (1) number of rounds or (2) sequence length have been attained, or until the

exhaustion of the process, as detected either by the (3) absence of further extending reads in the

database, or by (4) no increase of the sequence length in two successive rounds. In any case,

GenSeed executes a final assembly step (Figure 1D), where all reads recruited during the several

cycles are used, together with the consensus sequence generated in the last round. At the end of the

process, a final reconstructed sequence is stored. Also, some files of the intermediate steps can be

stored, including the BLAST output files, CAP3 assembly files and the consensi of all rounds.

Finally, GenSeed produces three report files in HTML format, which list all reads incorporated in

each round, the corresponding consensus sequences, and display a graphical output that shows a

schematic view of the progressive sequence reconstruction.

 3

Fig. 1. Workflow of GenSeed algorithm. GenSeed automatically detects the type of biological

sequence (A) used as a seed and (B) formats, if necessary, a database FASTA file to generate

BLAST index files. The seed sequence is introduced into a seed-driven assembly iterative process

(C), which shortly consists in a similarity search, sequence retrieval and assembly. The walking

process is concluded when a user-defined number of rounds or sequence length have been attained,

or alternatively, when GenSeed detects no additional increase of the sequence length or

incorporation of novel reads in comparison to the previous round. All reads selected during the

walking cycles are then recruited and assembled (D).

 4

3. The database

GenSeed requires a database of DNA sequences, which will be recursively used to select reads for

the progressive seed-driven assembly process. The database must follow the multiple sequence

FASTA format. Shortly, all sequences are composed by a header starting with a “greater than” sign

(>), followed by a short name and/or description. The header is separated from the sequence by a

“carriage return” (end-of-line) character. The so called multiFASTA format is composed by

multiple sequences in a concatenated version of the FASTA format.

Example:

>My_sequence_002

ATGACGATGTAGCGAGCAGTCGATGCTCTCTTAAAAAGGTGTGCATCATG

>My_sequence_003

GGGGTTTTAGGCACGCACGACGGCAAAACGTGCGTGGTGGAATCGTACGT

In order to retrieve subsets of specific sequences in a rapid and efficient way, GenSeed uses NCBI’s

formatdb program to create BLAST index files, and fastacmd to fetch the sequences based on a

list. In order to correctly identify and retrieve the sequences from the database, fastacmd has some

constraints on the header content and identifier format. Thus, no duplicate names are accepted, and

each sequence must have a unique identifier. Also, some public databases use a nomenclature

composed by the organism name followed by an identifier. Some examples of sequence identifier

formats that are accepted by fastcmd are provided below:

>TnOp07401E02.g

Ggtagtttttccatgccatttggtcagattttgacttatacttgagatcgcgccccgaaagatcctccagta

caaatttgccacaccattttcacaatgttc

>T62292 2006-10-02 EST dbEST

CAGCTTTGATTAAAGAAACTTTAAGTGTGTCTGTTTCTTTCACAACATTTTTTTGAGTGG

GACGAGACTGAAGGTCCGTACGCCGCTTGTGACCACACGCTTTTAATGAGTGAAAGCCTG

GGGCCGCGGAGCTCCTCCACTGTTGTCCTGA

>cam100a10.p1t

TTTTTTCAATGCTGTCCTCGAAAATGCTCGCTCTAGGGCTTATGGAATTTTAGCAAGTTG

ATTTTTAAAGCAA

>gnl|ti|1284152938 1041048645874

GTACGGTTGGAGGCTACAGTTGGCCCACATCGGGGGAAGCGACGTCGGCAGATGGTTCTCCAGAGCCTAC

TGCGGCGGTGAGAGTCCAGTG

 5

>gi|115357965|gb|DV111293.1|DV111293 EST-MOA151H10 Toxoplasma gondii

Tachyzoite Library Toxoplasma gondii cDNA clone MOA151H10 5', mRNA

sequence

ATTCGGCACGAGGCTGCTCCGGTTCACGTATTTTGCCCTGAGCCAGCTTCCACCTCTTAGCACCGAGGCG

TTCCCACGGCCATGGCCGAGTACTCCTACGTGAAGTCCACCAAACTCGTGCTCAAGGGAACCAAG

However, sequence identifiers composed solely by numerical characters are not accepted, and must

be converted to one of the formats displayed above.

Not accepted:

>115357965

ATTCGGCACGAGGCTGCTCCGGTTCACGTATTTTGCCCTGAGCCAGCTTCCACCTCTTAGCACCGAGGCG

TTCCCACGGCCATGGCCGAGTACTCCTACGTGAAGTCCACCAAACTCGTGCTCAAGGGAACCAAG

Accepted:

>115357965.

ATTCGGCACGAGGCTGCTCCGGTTCACGTATTTTGCCCTGAGCCAGCTTCCACCTCTTAGCACCGAGGCG

TTCCCACGGCCATGGCCGAGTACTCCTACGTGAAGTCCACCAAACTCGTGCTCAAGGGAACCAAG

Accepted:

>115357965A

ATTCGGCACGAGGCTGCTCCGGTTCACGTATTTTGCCCTGAGCCAGCTTCCACCTCTTAGCACCGAGGCG

TTCCCACGGCCATGGCCGAGTACTCCTACGTGAAGTCCACCAAACTCGTGCTCAAGGGAACCAAG

Also, formatdb/fastacmd only work with identifiers contained in a restricted number of text

characters. Thus, if this restricted number of characters does not define a unique identifier,

fastacmd will not be able to retrieve the sequence. For instance, the format below is not accepted:

>Toxoplasma_gondii|T62291|2006-10-02|EST|dbEST

GTGCCGTGCCAGCTTGGTGGTGGTATGGACCCGAGCGAAGCAGTGCATGCTTGTGACGAAAGGTACGGACCGATTCTGCT

TTGAGTGACTTGGAGCAAGCGTCAGACTAGGACCATCTGGTTACGTGGGGTGTTACCGTTGAAGAAATGGAGCGCGTTTC

TTCCAAGTGGGTTTTGCAAATGTTGTGTCGCTGCAGGGGCCAGGGGACGCCTGTCACGGTCCTCAAATATGCAGCATG

But if you remove the “Toxoplasma gondii|” string, then the database will work fine:

>T62291|2006-10-02|EST|dbEST

GTGCCGTGCCAGCTTGGTGGTGGTATGGACCCGAGCGAAGCAGTGCATGCTTGTGACGAAAGGTACGGACCGATTCTGCT

TTGAGTGACTTGGAGCAAGCGTCAGACTAGGACCATCTGGTTACGTGGGGTGTTACCGTTGAAGAAATGGAGCGCGTTTC

TTCCAAGTGGGTTTTGCAAATGTTGTGTCGCTGCAGGGGCCAGGGGACGCCTGTCACGGTCCTCAAATATGCAGCATG

Before using GenSeed, the user is advised to check if the database file is compliant with fastacmd

sequence identifier constraints.

 6

4. Getting started with GenSeed

4. 1. Mandatory arguments

To run GenSeed, you should type the following command:

genseed.pl –s <seed_input_file_name> -d <database_file_name>

Please note that –s and –d are the only mandatory arguments.

• -s <seed_input_file> - this is a text file in FASTA format that contains the seed

sequence(s). Both nucleotide and protein sequences are accepted as input, and GenSeed

automatically detects the type of sequence. GenSeed also accepts multiple seeds, which can

be provided in a multiFASTA file. A complete path must be provided if the file is not

located in the same directory where GenSeed is invoked from. Seeds containing both DNA

and protein sequences in the same file are not accepted by GenSeed.

• -d <database_file> - this is a multiple nucleotide sequence file in a multiple

sequence FASTA format. This file will be used as a database to select the reads presenting

overlaps with the seed sequence(s). A complete path must be provided if the file is not

located in the same directory where GenSeed is invoked from.

4.2. Help

• -h: prints a help screen

4.3. Changing parameters for output files

• -o <output_directory_name> - name of the output directory that will store

GenSeed´s output files. If the output directory name is not specified, genseed_dir# will

be used by default. If GenSeed determines that genseed_dir1 already exists, it will create

a directory named genseed_dir2, genseed_dir3, and so forth. However, if a user-

defined directory name already exists, then the specified directory and respective files will

be overwritten.

 7

• -x <option> - defines the sets of output files that will be saved.

� simple – saves the final assembled sequence(s), the corresponding CAP3 files, and the

HTML files.

� complete - saves all files above, plus the following files produced in each round:

BLAST output files, seed sequences, CAP3 assembly files and assembled sequences.

GenSeed always generates the following output files:

• genseed.log – This is a log file that stores the parameters utilized to run GenSeed, the

size of the contig (assembled sequence) obtained in each round, the number of reads

used for the last assembly cycle, the size of the final contig(s), and a list of errors, if

there were any, reported by the third-party programs.

• report.html – This file contains the information on the size of the contig(s), number

of reads included in the final assembly step, and graphical outputs that display the

assembly of each walking round. The graphic files are stored in the image_dir

directory.

• seed_contigs.html – This file contains the consensus sequence(s) obtained in each

round.

• list_of_reads.html – This file contains a list of names of the reads incorporated in

each round.

• final_contigs.fasta – This file contains the final consensus assembled sequence(s)

obtained by GenSeed.

• CAP3_dir – This directory contains CAP3 input and output files. If –x (simple)

parameter is used, only the files of the last assembly round will be stored.

Additionally, if the option -x (complete) is used (default), the following directories

and/or files will be stored:

• BLAST_dir – This directory contains BLAST output files produced in each assembly

round. Files typically are named as blast_1.out, blast_2.out, etc.

• fasta_dir – This directory contains all seed sequences used as inputs for BLAST

searches in all rounds. At the first round the user provides the seed sequence(s) to be

used. After the first round, GenSeed automatically extracts the ends from the assembled

 8

sequence and then use them as seeds in the subsequent round. Seed sequences are then

named as seed_1.fasta, seed_2.fasta, etc. A second set of files is composed by

the consensus sequences generated by CAP3 during the assembly phase of each round

(consensus_1.fasta, consensus_2.fasta, etc.). A specific requirement is that

each of these contigs must contain the consensus sequence of the previous round. This

feature guarantees that the progressive assembly process will always keep the original

seed sequence as part of the newly assembled sequence. Finally, a file named

final_reads.fasta contains all read sequences selected during the whole set of

cycling rounds, and that were used for the final assembly phase.

5. Fine tuning GenSeed with additional parameters

The whole workflow shortly described in Section 2 is highly configurable, and GenSeed provides

many parameters to fine tune the progressive assembly process. We will now cover the optional

parameters that allow adjusting GenSeed to the several possible applications.

5.1. Parameters to limit the walking process

• -e <option> - defines the expansion direction of the sequence in regard to the seed.

NOTE: unidirectional expansion is only allowed for a single nucleic acid seed sequence.

Multiple nucleic acids sequences and protein seeds cannot be extended unidirectionally.

� l - expand only from the 5' end of the seed(s)

� r - expand only from the 3' end of the seed(s)

� b - expand from both ends of the seed(s) (default)

• -f <integer> - defines the maximum length (bp) of the final consensus sequence

(default: no limit). If an assembled consensus sequence is longer than this value, then

GenSeed will interrupt the walking process and proceed with the final assembly step.

Please notice that the length of the final consensus will most of times be slightly longer

than the f value, since this value is just a reference limit for GenSeed to interrupt the

walking cycling.

• -r <integer> - defines the maximum number of assembly rounds (default: 100

rounds).

 9

5.2. Defining the size of the intermediate seeds

To save computational resources, GenSeed does not use the whole consensus sequence of a given

round as a seed for the next one. Instead, GenSeed extracts one or both end sequences of a user-

defined length (parameter –l), and these sequences are then used as seeds in the subsequent

assembly round. Once the overlapping reads are identified, CAP3 is used to assemble these reads

together with the whole consensus sequence of the previous round. Only at the last assembly step,

GenSeed uses the whole set of reads selected during all rounds. This approach allows GenSeed to

perform much faster in the intermediate assembly steps. By using high –l values, BLAST tends to

find more positive matches searches, as the query sequence is bigger, but at the cost of a slower

performance. Also, because the number of recruited reads is usually higher, the assembly steps will

perform slower. In general, if we reduce the –l value, the opposite effects will be noticed but, most

of times, a higher number of rounds will be necessary to cover a given sequence length, since the

sequence increment of each round is usually shorter.

• -l <integer> - Length of the sequence end(s) that will be used as seed sequences(s)

in the next round (default: 500). NOTE: * (asterisk) characters, sometimes added by

CAP3, are automatically removed from the sequence.

5.3. Defining the quality of the sequence ends to be used as seeds

GenSeed implements a routine to scan the ends of the assembled consensus sequence of each round

to check the assembly confidence. GenSeed examines the *.ace (assembly) file created by CAP3

and utilizes a sliding window of a user-defined length (parameter –q) to scan the sequence, starting

from both ends towards the central part. An end sequence is accepted when the region within the

sliding window presents a percentage of bases (parameter –m) with quality values above a user-

defined threshold value (parameter –p). Once the sliding window finds a region fulfilling these

criteria, the scanning process ends. End sequences starting from high-quality regions, and

presenting a user-defined length (parameter –l, see above), will then be used as seeds for the next

walking cycle. Please notice that base qualities here are not related to the classical “Phred quality”,

as we are not using PHD files. Every time CAP3 uses FASTA sequences with no quality values, it

ascribes a flat value of 20 to all bases. However, during the assembly process, base redundancy may

imply in a higher confidence, such that CAP3 may ascribe higher values to the consensus bases.

Conversely, base discrepancies for the same position among different reads may decrease the

 10

confidence value. Therefore, “confidence values” must be distinguished from Phred values and only

represent an indication of the level of redundancy and discrepancies across different reads of the

assembly.

• -q <integer> - Length of the sliding window (default: 0)

• -p <integer> - Minimum quality value for the sliding window (default: 0)

• -m <integer> - Maximum percentage of bases within the sliding window presenting

quality values below the minimum quality value (-p) (default: 10)

5.4. Changing the stringency of the alignment seed/reads

The seed-driven assembly process starts through a similarity search of the seed against a database in

order to select the reads that will in turn be assembled to generate the seed of the next round. The

reads are selected if the alignment e-value is lower (and therefore more significant) than the value

defined by BLAST’s –e parameter (see section 6.2). Hence, by default, the top scoring hits are

always chosen, even if the absolute scores or e-value of the respective alignments are very poor. To

avoid the reconstruction of unrelated sequences, the user can establish a priori criteria for the

read(s) to be accepted. Thus, by using -i 90 and –j 90, GenSeed will only select reads and

proceed with the sequence reconstruction process if the seed has found matches in the database

presenting alignment blocks with a length equal or higher than 90% of its own length (parameter –

i). Also, as a second parameter, the read(s) will only be accepted if the alignment blocks present a

percentage identity equal to or higher than 90% (parameter –j). If the top hit alignments do not

fulfill these criteria, than GenSeed will return a message informing that no hit has been found in the

database, and suggest using another seed. Please notice that these parameters are only functional for

the first BLAST search. From the second round on, BLAST’s –e parameter is the only criterion

defining stringency.

• -i <integer> - Minimum length of the alignment block of the first BLAST search,

in percentage relative of the length of the seed sequence (default: 0)

• -j <integer> - Minimum identity percentage of the alignment block of the first

BLAST search (default: 0)

 11

5.5. Avoiding the incorporation of chimeric reads

GenSeed tries to avoid the incorporation of chimeric reads in the newly growing sequence. This is

particularly problematic when repetitive sequences are present. In each cycle, GenSeed takes the

seed sequence and runs a BLAST search to select a new set of reads to be incorporated. Before

proceeding with the assembly step, these reads are aligned with BLAST to the consensus sequence

of the previous round. In case a read presents an alignment that does not extend either to the end of

this consensus sequence or to the end of the read itself, it can be considered as a potential chimera.

The parameter –t defines what is the minimum length of this misaligned region for a read to be

considered as chimeric. If a read falls in this case, it will not be incorporated in the assembly phase

and, as such, will not be used to extend chimeric sequences.

NOTE: In our experience, GenSeed does a reasonable job in discarding potentially chimeric

sequences. However, if the original seed sequence itself presents a match to a chimeric read, then

GenSeed will probably result in a wrong assembly. Choosing a seed from another region will solve

the problem. Alternatively, manually identifying the potential chimeric read and removing it from

the database can also solve the problem. This can be accomplished by BLAST searches followed by

manual inspection, and also by looking at the assembly using Consed. The chimeric reads are

usually at the end of the contig, and present matches to several reads in one end (the internal one in

relation to the contig), but to no other read at the external end.

• -t <integer> - Minimum length of misaligned ends to discard potentially

chimeric sequences (default: 75)

5.6. Driving final assembly with the last-round consensus sequence

During the intermediate walking cycles, GenSeed selects the reads and assemble them together with

the whole consensus sequence of the previous round. Because GenSeed uses only the end

sequences as seeds, the total number of reads used in each intermediate assembly is rather low, and

the assembly steps perform in a relatively fast pace. Conversely, the last assembly step uses the

whole set of reads selected during all rounds. The incorporation of a long consensus sequence, plus

a high number of reads, causes a computational overload. Hence, if the consensus sequence is

included as a template, CAP3 may require a much longer processing time (sometimes more than

three times). On the other hand, deactivating this option may eventually lead to a final consensus

 12

sequence being divided into two or more distinct contigs. For this reason, we recommend,

whenever possible, and despite the higher computational load, to maintain this option activated (-g

yes).

• -g <integer> - Use the last assembly consensus sequence as a template in the final

assembly step (default: yes)

5.7. Masking vector sequences

• -v <vector_file_name> - name of the vector database file to be used for

masking purposes. A complete path to the file must be provided if the file is not

located in the same directory where GenSeed is invoked from.

6. Parameters for third-party programs

IMPORTANT: the parameters below MUST be defined under quotes.

The parameters below will be incorporated as a string of characters in the command used to invoke

third-party programs. For this reason, they must all be specified under quotes.

• -a <option> - CAP3 assembly parameters (default: none)

• -b <option> - BLAST parameters (default: "-e 1e-06 -F F –b 500")

• -c <option> - Cross_match parameters for vector masking (default: "-minmatch 12

-penalty -2 -minscore 20")

6.1. Some examples on how to use the third-party program parameters:

genseed.pl –s seed_file_name –d seed_data_base –a “-o 100 –p 95”

will result in CAP3 running as it were invoked with the command below:

 cap3 input_file -o 100 –p 95

genseed.pl –s seed_file_name –d seed_data_base –c “-minmatch 12

-penalty -2 -minscore 20”

will result in Cross_match running as it were invoked with the command below:

 13

cross_match input.fasta vector.fasta -minmatch 12 -penalty -2

-minscore 20

6.2. Some important considerations on BLAST parameters and their impact on GenSeed

performance and efficiency

GenSeed uses as default the following BLAST parameters: -e 1e-06, -F F and –b 500.

Let’s understand each one of these parameters and how they can change the way how GenSeed

runs.

Parameter –b

The parameter –b defines how many alignments will be displayed by BLAST in a similarity search.

Since GenSeed obtains the list of positive matches from this output, using a low –b value implies

that a low number of reads will be used in each assembly round. This can be advantageous if a high

performance is more important than a high coverage. On the other hand, choosing a low –b value

tends to increase the number of rounds necessary to complete the progressive assembly of a given

sequence length. Conversely, choosing a high –b number may imply in a much better read

coverage, provided that the database has a good overall coverage overall. Also, less walking rounds

will probably be necessary to complete a job, but at the cost of loss of performance due to heavier

loads in the assembly steps.

Parameter –e

The parameter –e defines what is the expectation value (e-value) cutoff for BLAST to display

sequence alignments. The e-value of a given alignment block is the number of expected alignments

that you should expect to occur by chance, given the database size you used, that would yield the

same score as the one you have obtained. Because the e-value changes in accordance to the

database size you use, there is no way to correctly choose one single “most appropriate” value.

BLAST’s default is 10, which is a very high and non-stringent value, meaning that 10 subject

sequences are expected to produce a similar alignment by chance. GenSeed was implemented to use

a default value of 1e-06 (one to one 1 million), so supposedly only highly significant alignments

 14

will be reported by BLAST. Since GenSeed uses BLAST’s list of hits to compose the assembly, if

this list comprises only highly significant matches, chances are that you will be using the most

appropriate reads. This is just an assumption, since CAP3, the DNA assembler, will also use its own

stringency parameters to select those reads that significantly presents overlaps with each other. This

way, unrelated reads will theoretically not be assembled in the same contig, even if you use a low-

stringency –e value. Probably, the most important advantage of being stringent (using a very low –

e parameter) is to reduce to a minimum the total number of reads that will be used in each assembly

round. Hence, the computational load will be also diminished (less reads will have to be compared

to each other in the assembly process) and, therefore, an improvement of overall performance is

expected to occur.

A caution note, however, must be presented. If you use very short seed sequences, especially

protein sequences, the e-value of the alignment will be high (even higher than 1). Thus, if you use a

too stringent –e value, the seed will not be able to progress, since all alignments’ e-values will fall

above defined number, hence no alignment will be reported by BLAST. In our experience, we have

successfully reconstructed full-length cDNAs using protein seeds as short as 8-amino acid long.

However, for these particular cases, we had to use –e values as high as 1000. To avoid the

selection of spurious reads, we also use GenSeed parameters –i 90 and –j 90 (see section 5.4).

As a rule-of-thumb, we recommend using relatively low values (1e-06) for sequences longer than

100 bp or 33 amino acid residues, and extremely high values (1000) for very short sequences,

especially for proteomic data (peptides of 8 to 20 aa residues). For LongSAGE data composed by

17-bp tags, we have successfully reconstructed the corresponding cDNAs using BLAST parameter

–e 1, and GenSeed parameters –i 90 and –j 90.

Parameters –e versus –b

Since using a low –e value (high stringency) has a reducing effect on the number of reads to be

reported by BLAST, we recommend a balance between -e and –b values. If you are using a very

high –e value for proteomic data, then lowering –b value looks sensible. On the other hand, when

using highly stringent conditions, -b value can be relaxed. GenSeed’s default values are 1e-06 for –

e and 500 for –b. It is noteworthy that even using high –b values, the total number of reads selected

in each round can be very small, particularly if the database coverage is poor.

 15

Parameter –F

The parameter –F F turns BLAST’s low-complexity filter off. This filter is used by BLAST to

mask off low-complexity regions, so they are not considered for sequence alignments. Depending

on the sequence composition of your query, this default choice may be appropriate. However, if

your target sequence (the one that will be used for walking) is very rich in low-complexity regions,

it may be necessary to activate this filter. Since it is hard to predict if the filter will or not represent

the best choice, we recommend using GenSeed with the filter turned off (default) and, if the

assembly is not acceptable, trying to rerun GenSeed with the filter this time turned on.

© 2007. Tiago J. P. Sobreira and Arthur Gruber

